
CALCULATION OF COLLISIONAL CROSS
SECTIONS FOR THE

2P3/2 → 2P1/2 TRANSITION IN
ALKALI-NOBLE GAS SYSTEMS

THESIS

Sam Butler, Captain, USAF

AFIT/GAP/ENP/10-M04

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.



The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the United States Air Force, Department of Defense, or
the United States Government.



AFIT/GAP/ENP/10-M04

CALCULATION OF COLLISIONAL CROSS SECTIONS FOR THE

2P3/2 → 2P1/2 TRANSITION IN ALKALI-NOBLE GAS SYSTEMS

THESIS

Presented to the Faculty

Department of Engineering Physics

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Applied Physics

Sam Butler, BS

Captain, USAF

March 2010

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.



AFIT/GAP/ENP/10-M04

CALCULATION OF COLLISIONAL CROSS SECTIONS FOR THE

2P3/2 → 2P1/2 TRANSITION IN ALKALI-NOBLE GAS SYSTEMS

Sam Butler, BS
Captain, USAF

Approved:

David E. Weeks, PhD (Chairman) Date

Glen P. Perram, PhD (Member) Date

William F. Bailey, PhD (Member) Date

JMEIER
Typewritten Text
//SIGNED//

JMEIER
Typewritten Text
//SIGNED//

JMEIER
Typewritten Text
//SIGNED//

JMEIER
Typewritten Text



AFIT/GAP/ENP/10-M04

Abstract

Collisional cross sections were calculated as a function of energy for two coupled one

dimensional, spherically symmetric potentials. The Split Operator Method[4] was

used to propagate an initial Møller state, chosen to be a Gaussian in the asymptotic

limit, through a potential. The correlation between the wave packet and Møller final

state was calculated at each time step. Using the Channel Packet Method[18], the

correlation function was used to obtain scattering matrix elements. From scattering

matrix elements for several different effective potential values and using the Method of

Partial Waves[7], the collisional cross section is calculated for the transition from the

2P3/2 to 2P1/2 level. This method was applied to LiHe at low energy, with results close

to experimentally measured values for Alkali-Noble Gas interactions. Cross sections

were also calculated for NaHe, KHe, RbAr, and LiHe-3. An explanation for the low

RbAr cross sections from the time dependent calculations is provided.
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CALCULATION OF COLLISIONAL CROSS SECTIONS FOR THE

2P3/2 → 2P1/2 TRANSITION IN ALKALI-NOBLE GAS SYSTEMS

I. Overview

1.1 Introduction

Collisional cross sections play a fundamental role in atomic and molecular transi-

tions in many systems. They provide a non-radiative source of energy transfer that

is particularly important in laser systems [20]. DPALs are one area of interest in the

Air Force where collisions are essential to operation of the laser [14]. The energy level

diagrams for all alkali atoms are similar in structure, although they differ in exact

positioning and separation of the energy levels, and in the shapes of the potentials of

the 2P1/2,3/2 states which are involved in the collisional relaxation process.

This situation is not unique to DPALs. In many systems, one often arrives at

a decision point where several atoms in one column of the periodic table nearly all

appear equally suited for a particular task. It is often difficult to forecast which atom

will be most effective, but it is difficult to switch atoms in the middle of the exper-

iment, often requiring entirely new systems and significant effort fine-tuning these

systems. Although there are generally several factors which influence the decision,

often the collisional parameters are important. The theory of collisional cross sec-

tions has been an area of intense research over the past several decades, with varying

degrees of success. In systems where collisional effects play a substantial role, the

method in this thesis may be used to obtain collisional cross sections between two

states, given the potentials for each state and the interaction potential. It is hopeful

1



that determination of collisional cross sections given input potentials of a system may

provide a partial answer to this question in systems where collisions play a major

role, such as with DPALs [14], or with most chemical physics interactions.

1.2 Background

In order to calculate collisional cross sections between two coupled states, the

Channel Packet Method is used [18] [22]. The method employed is Gaussian wave

packet propagation through a diabadic surface using the Channel Packet Method[4]

to compute S-matrix elements. This involves propagating a Gaussian wave packet

forward and backward in time via the Møller operators, then observing the overlap,

which is proportional to the scattering matrix element. These scattering matrix

elements are then used to determine the collisional cross sections for several energies.

1.2.1 Propagation.

As discussed in Chapter II, the Channel Packet Method is used to propagate a

wave packet. At each time step, there are 2 Fourier transforms required per surface

(4 total for a 2-state problem). At each time step, the wave packet is projected on

to the Møller final state. The initial and final wave packets are judiciously chosen to

provide the collisional cross sections within an energy range of interest.

1.2.2 Collisions.

One can represent the interaction between states as an operator Ŝ, known as the

scattering operator. This operator is not time-dependent because it is defined as

taking reactants from the infinite past (|ψin〉) and resulting in products in the infinite

future (|ψout〉):
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|ψf〉 = Ŝ|ψi〉 (1)

From this equation, it is obvious that interactions between potentials must be

contained in Ŝ. If it is assumed that only inelastic collisions between the two nearest

states can cause an interaction between the potentials, the problem of calculating

the collisional transition rate between two states is equivalent to the problem of

calculating the matrix elements of Ŝ in a certain basis [6] [21].

In the simplification of allowing only interactions between two neighboring states

and a single k value (plane wave), the S-matrix can be understood as a 2x2 matrix.

(The S-matrix is simply the representation 〈k|Ŝ|k〉[6].) Under these conditions, the

S-matrix can be written as:

S =

S+k,+k S+k,−k

S−k,+k S−k,−k

 (2)

Which wave function is chosen as the initial Møller state, and which wave function

is the final Møller state? It is actually up to you to decide, within some rather flexible

boundaries. The choice will determine the outputted energies that are not overrun

by numerical error, and which scattering matrix element is calculated. This arbitrary

choice of wave function is possible because the influence of the expansion coefficients

for each k value are removed from the S-matrix element provided the initial Møller

state is either entirely in +k space or in −k space, as discussed in Chapter III.

Similarly, the final Møller state must be either entirely in +k space or in −k space.

For a spherically symmetric problem, the initial Møller state is often in −k space and

the final Møller state is often in +k space. If the initial and final Møller states are

placed in the asymptotic limit of the potential, Gaussian wave packets may be used.
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Table 1. Summary of Atomic Units

Unit Type Atomic Units SI Units

Length 1 Bohr 5.291772108(18)× 1011 m
Mass 1 au (of mass) 9.1093826(16)× 1031 kg
Time 1 au (of time) 2.418884326505(16)× 1017 s

~ 1 au (of angular momentum) 1.05457168(18)× 1034 J s
Energy 1 Hartree 4.35974417(75)× 1018 J

Cross Section 1 Bohr2 0.2800285204(49)× 10−16 cm2

1.2.3 Units.

Atomic units are used in this thesis unless otherwise noted. Conversion from

atomic units to SI units are summarized in Table 1.

1.3 Problems and Objectives

It was first necessary to code a Gaussian wave packet propagator. Then the cor-

relation function resutls from the propagator were used to implement the Channel

Packet Method and obtain scattering matrix elements. Through the Method of Par-

tial Waves[7], the procedure was repeated for several different effective potentials.

The resulting S-matrix elements were summed to obtain the collisional cross section

for each energy with numerically stable data. The code was verified under several

conditions where the solutions to the scattering problem are known. This code was

executed using adiabatic potentials for LiHe from another Ph.D. student at AFIT [5].

From these calculations, the following observations were made:

• The most difficult hurdle to overcome in this process is determination of the

coupling potential between the two states of the system

• For these systems, the effective potential died off very slowly for l ≈ lmax.

This required placing the wave packet far from the potential and truncating the
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effective potential at a point when it was relatively small compared to other

energy scales in the problem. This preserves the approximation of the Møller

states as Gaussian potentials.

1.4 Scope and Limitations of Research

The work performed assumes the potentials for the system are known. These

potentials are assumed to be symmetric central potentials, with the potentials passed

as input to the system. Minimal effort was expended in understanding how the

parameters for the potentials are obtained for a specific system. Furthermore, it is

assumed that only 2 states influence the collisional transition process.

Initially, line broadening was also to be investigated using the Channel Packet

Method and a review paper [3], but this was abandoned due to lack of time. A study

of line broadening using the Channel Packet Method could be beneficial to DPAL

work and the general spectroscopy community.

1.5 Significance of Research

Often, one reaches a point where several atoms or molecules appear to be suitable

for a given purpose, and it is desirable to know in advance which atom or molecule

would be best suited for the task at hand.

In DPALs, one of several factors to consider when selecting an alkali is maximizing

the 2P3/2 → 2P1/2 cross section in order to more easily obtain a population inversion

in the 2P1/2 state [14]. It is hoped that a more rigorous understanding of the methods

for computing collisional cross sections for this state transition could better model

this essential collisional dynamic.

Other applications involving collisional cross sections arise in the realms of chem-

ical physics and spectroscopy, where collisions play a significant role.
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II. Gaussian Wave Packet Propagation

Scattering theory describes the interaction of an incoming wave packet with a

potential over a certain time. Therefore, any complete discussion of scattering must

begin with a discussion of propagating a wave packet through an arbitrary potential.

For sake of convenience, the wave packets used as input for this thesis are Gaussian,

but this discussion is kept generic to any wave function and any potential.

2.1 Theory of Wave Packet Propagation

Central to any time evolution problem in quantum mechanics is the time evolution

operator, the Hamiltonian Ĥ:

Ĥ = T̂ + V̂ (3)

T̂ is the kinetic energy and V̂ is the potential energy. In matrix mechanics, the

Schrödinger equation is as follows:

Ĥ|ψ〉 = E|ψ〉 (4)

This equation has the following solution if the Hamiltonian is time-independent:

|ψ(t)〉 = e−iĤt/~|ψ(0)〉 = e−i(T̂+V̂ )t/~|ψ(0)〉 (5)

In the coordinate representation, this equation has the following form:

〈x|ψ(t)〉 = ψ(x, t) = 〈x|e−i(T̂+V̂ )t/~|ψ(0)〉 (6)

Now, a problem is reached. T̂ + V̂ is not generally diagonal in the position basis.

Furthermore, since T̂ and V̂ do not necessarily commute, the näıve approximation
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below is only accurate to O(t):

e−i(T̂+V̂ )t/~ ≈ e−iT̂ t/~e−iV̂ t/~ (7)

A much better approximation to make will be discussed later, but it is not central

to the discussion at present; in order to more clearly illustrate other features of the

problem, I will use this approximation and later discuss how to make a more robust

approximation. This approximation has only solved half of the problem. Although it

is true that V̂ is usually diagonal in position space, T̂ is not. Fortunately, there is an

easy way around this problem. The kinetic energy of a particle is as follows:

T̂ =
p̂2

2m
=

~2k̂2

2m
(8)

This means T̂ is diagonal in the momentum (p) representation, or analogously,

in k-space. If the potential is taken to be diagonal in the position representation

(e.g., V (x) is specified), and if the transform from the x representation to the k

representation is known, then the problem will be solved. By inserting completeness

in the form of |x〉〈x|, one can see the transformation of ψ from position space to

k-space is simply the Fourier transform [8][7]:

ψ(k) = 〈k|ψ〉 =

∫
〈k|x〉〈x|ψ〉 dx =

1√
2π

∫
e−ikxψ(x) dx = F(ψ(x)) (9)

The transformation of ψ from k-space to position space is derived analogously,

and is the inverse Fourier transform F−1. This differs from the Fourier Transform F

only by replacing the term of e−ikx under the integral with the term eikx. Therefore,

we now have a mechanism to evaluate Equation (6) through the use of completeness

over k and x twice each:
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〈x|ψ(t)〉 = 〈x|
∫ ∫ ∫ ∫

|k〉〈k|e−iT̂ t/~|k′〉〈k′|x′〉〈x′|e−iV̂ t/~|x′′〉〈x′′|ψ(0)〉 dk dk′ dx′ dx′′

=

∫ ∫ ∫ ∫
〈x|k〉e−iT (k)t/~〈k|k′〉〈k′|x′〉e−iV (x′′)t/~〈x′|x′′〉〈x′′|ψ(0)〉 dk dk′ dx′ dx′′

=

∫ ∫
〈x|k〉e−iT (k)t/~〈k|x′〉e−iV (x′)t/~〈x′|ψ(0)〉 dk dx′

= F−1
[
e−iT (k)t/~F(e−iV (x)t/~〈x|ψ(0)〉)

]
(10)

2.1.1 Split Operator Method.

As pointed out previously, it is necessary to make an approximation to e−i(T̂+V̂ )t/~

as well for a general potential. Up to this point, we have used the approximation in

Equation (7) for simplicity, despite its numerical instability. It is now time to fix that

simplification. A much better approximation is as follows:

e−i(T̂+V̂ )t/~ ≈ e−iV̂ t/(2~)e−iT̂ t/~e−iV̂ t/(2~) (11)

This is known as the Split Operator method [4], which is widely used for Time-

Dependent problems because of its increased numerical stability at relatively low cost.

As a result, Equation (5) is rewritten as:

e−i(T̂+V̂ )t/~|ψ(0)〉 ≈ e−iV̂ t/(2~)e−iT̂ t/~e−iV̂ t/(2~)|ψ(0)〉 (12)

It can be shown that the equation is approximately true to O(t2) (that is, the error

term scales as t2) by simply taking a Taylor expansion of both sides of the equation

and comparing powers of t, taking care to consider T̂ and V̂ do not, in general,

commute. This introduces an algorithmic error of O(t3). This modification also does

not fundamentally alter the development undertaken in the previous section. It does
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add another elementwise multiply (which takes time O(N)) by modifying Equation

(10) to become:

ψ(x, t) = e−iV (x)t/(2~)F−1
{
e−iT (k)t/~F

[
e−iV (x)t/(2~)ψ(x, 0)

]}
(13)

Since the FFT routine is O(N log2N), adding an O(N) operation does not signif-

icantly alter runtime, and the added numerical stability ensures rapid convergence,

so the use of this approximation instead of the more straightforward Equation (10)

is justified.

2.1.2 Absorbing Boundary Conditions.

For potentials of interest, it may be necessary to propagate the wave packet over

long time scales in order to fully pass through the potential. Through standard

propagation techniques, this would require a large enough grid in position space to

hold the entire packet through the calculation. However, it will be shown in Chapter

III, Equation (25), that the wave packet information is no longer required once it has

propagated through the potential and beyond a certain point.

For this reason, without any loss of information, it is possible to prematurely

truncate the grid in position space by utilizing absorbing boundary conditions. The

simplest way to do this is by adding an absorbing potential, such that the potential

is of this form:

V (x) =


V0(x) + iVabs(x) for x ≥ 0

V0(x)− iVabs(x) for x < 0

(14)

A natural choice of the absorbing potential is a Gaussian. It is possible for this ef-

fective potential to cause reflections. These reflections may be minimized by choosing

a relatively broad Gaussian in position space. The effect of this absorbing potential is
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to rapidly reduce the value of the wave packet at the boundary, as shown by Equation

(13).

2.1.3 3-D Spherical Central Potentials.

When propagating through a spherically symmetric central potential and solving

Schroedinger’s Equation, one can assume the following form for the solution (where

r is a 3-D vector and r, θ, φ are the three scalar components of that vector):

ψn,l,m(r) = Rn,l(r)Y
m
l (θ, φ) =

1

r
un,l(r)Y

m
l (θ, φ) (15)

The Y m
l (θ, φ) function is known, and therefore, the problem has been reduced from

three dimensions to one dimension, determining the value of un,l(r). Any spherically

symmetric central potential may be reduced in this manner. The solution for un,l(r)

may be obtained by plugging the assumed form above into the Schroedinger equation,

obtaining [7]:

[
− ~2

2m

d2

dr2
+
l(l + 1)~2

2mr2
+ V (r)

]
un,l(r) =

~2k2

2m
uk,l(r) (16)

The potential V (r) must decay faster than 1/r for this method to succeed. This

means the Coulomb potential may not be analyzed using this split operator method

in a single dimension.

2.2 Initial Wave Packet

There is a remaining issue with wave packet propagation yet to be discussed. What

is |ψ(x, 0)〉? In this thesis, Gaussian wave packets will be used, with the following

form:
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ψ(x) =

(
1

2π(∆x0)2

)1/4

× exp
[
−(x− x0)2

4(∆x0)2
+ ik0(x− x0)

]
(17)

The parameters of the Gaussian wave packet are as follows:

• x0 is the location of the peak in position space

• ∆x0 is the width

• k0 is the location of the peak momentum in k-space

• m is the mass

The width of the Gaussian in k-space at t = 0 is such that ∆x∆k = 1/2, the

minimum uncertainty, as can be obtained analytically from the Fourier transform of

the above equation:

ψ(k) =

(
2(∆x0)2

π

)1/4

exp
[
−[∆x0(k − k0)]2 − ikx0

]
(18)

There is flexibility in the choice of these parameters for the Gaussian. (In fact,

the Gaussian shape is not special; any initial wave packet can be chosen, so long as it

meets a few relatively lenient constraints described in Chapter III.) In the Chapter

IV, we will see that judicious choice of these parameters can ensure the most relevant

collisional information is extracted. Although this choice of |ψ〉 appears arbitrary at

present, it is because the scattering operator is independent of |ψ〉, as will be shown

in Chapter III.
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III. One Dimensional Collisional Transitions

3.1 Overview

Now that an arbitrary wave packet may be propagated through an arbitrary po-

tential, the next step is to use the propagation information to extract collisional data.

Let Ŝ be an operator such that:

|ψf〉 = Ŝ|ψi〉 (19)

Here, |ψf〉 is the final (product) wave packet and |ψi〉 is the initial wave packet. Ŝ

is known to be time-independent. The operator is also clearly unitary and Hermitian.

The question of collisions then is reduced to a question of what the operator Ŝ consists

of for a given system.

The S-matrix is defined as 〈k′|Ŝ|k〉[6], or the representation of the operator Ŝ in

k-space. For propagation through free space (V̂ = 0), it is obvious that no collision

can possibly occur. This means Ŝ = 1̂, and k′ = k for nonzero entries in the S-matrix.

Propagation through an arbitrary potential can lead to one or more of the following

for different energies, and thus different values of k:

• Transmission (k′ = k)

• Reflection (k′ = −k)

• Energy Transfer (|k′| 6= |k|)

Energy transfer can only occur in an inelastic collision, by definition. Although

inelastic scattering is at the heart of this thesis, it is important to first describe elastic

scattering, both as a test to ensure functional code and as a precursor for the more

complex case of scattering through an arbitrary potential.
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3.2 Elastic Scattering

Consider elastic scattering by a particle with energy E. Since the spherical poten-

tial has been reduced to one dimension, there are only two possible resulting values

of k in the asymptotic limit, as follows:

±k = ±
√

2mE

~
(20)

Since there are only two possible values of k, the complete S-matrix for a single

initial energy E may be represented by a 2x2 matrix. For each energy, the S-matrix

is represented as a 2x2 matrix as follows:

S =

 S++ S+−

S−+ S−−

 (21)

The sign represents whether the k-value is +|k| or −|k|. The first sign is the

product (output) k-value, and the second sign is the reactant (input) k-value; for

example, S+− = 〈+k|Ŝ| − k〉. Clearly, transmission is represented by the diagonal

elements of this 2x2 matrix, and reflection is represented by the off-diagonal elements.

Since the collision is elastic, all other matrix elements corresponding to different k-

values (and therefore different energies) must be 0, by definition. Therefore, this

2x2 matrix must be unitary. The only remaining step is to find the actual S-matrix

entries, which will be discussed in section 3.5.

For a spherically symmetric central potential, this matrix may be further sim-

plified. If the packet begins in the asymptotic limit at large r, then a packet with

initial momentum +~k does not undergo a collisional transition, so that matrix ele-

ment must be 0. Furthermore, a packet with final momentum in the asymptotic limit

of −~k has not yet undergone a collision, and thus is not the final momentum, so
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that matrix element also must be 0. This means only the matrix element S+− has a

nonzero entry for a spherically symmetric central potential.

3.3 Inelastic Scattering

In the case of inelastic scattering, for a given initial energy E, there are still only

two possible input k values, +k and −k, but there are now an infinite number of

possible output k values, in general, corresponding to a different product energy Ef .

Fortunately, in quantum mechanical transitions, we are often interested only in

transitions between a relatively small number of total states. In this thesis, we will

assume the two-state approximation holds. Therefore, there are only a total of 2

possible final energies, and therefore 4 possible final k-values, corresponding to non-

zero elements of the S-matrix.

This leads to the following general form for the S-matrix for a given input energy

E:



S+k1,+k1 S+k1,−k1 S+k1,+k2 S+k1,−k2

S−k1,+k1 S−k1,−k1 S−k1,+k2 S−k1,−k2

S+k2,+k1 S+k2,−k1 S+k2,+k2 S+k2,−k2

S−k2,+k1 S−k2,−k1 S−k2,+k2 S−k2,−k2


As in the elastic scattering case, this matrix must be unitary in the two-state ap-

proximation. The upper half of the matrix corresponds to the elastic scattering case,

and the lower half of the matrix corresponds to the inelastic scattering case, so this

matrix may be written simply as:

 Sk1→k1 Sk2→k1

Sk1→k2 Sk2→k2
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Obviously, the diagonal entries of this supermatrix are the elastic scattering and

the off-diagonal elements are inelastic scattering.

This may be further simplified for spherically symmetric central potentials, using

the same logic as in the preceding section. Under a spherically symmetric potential in

the asymptotic limit, k1 < 0 (the initial Møller packet is propagating into the potential

from the asymptotic limit) and k2 > 0 (the final Møller packet has completely reflected

off the potential).

Therefore, the nonzero elements of the S-matrix for spherically symmetric central

potentials when beginning in the asymptotic limit are simply:

 S+k1,−k1

S+k2,−k1


For a spherically symmetric central potential, the following property must there-

fore be true since the S-matrix is unitary:

|S+k2,−k1|2 + |S+k1,−k1|2 = |Selastic|2 + |Sinelastic|2 = 1 (22)

(Selastic = S+k1,−k1 and Sinelastic = S+k2,−k1). This important result for a spheri-

cally symmetric potential in the 2-state approximation may at first seem trivial, but

it gives an important mechanism to determine the error in the method if both the

elastic and inelastic scattering results are calculated.

3.4 Interpretation of S-matrix

Each element of the S-matrix is defined as follows [6]:

Slkf,ki = Ale
2iδl (23)

15



Here, δl is a real number, and Al is an amplitude less than or equal to 1. If all of

the packet transitions from ki to kf , the amplitude Al must be 1, since the S-matrix

is unitary. As the magnitude decreases, the probability amplitude of transitioning to

+kf decreases. For the special case of a spherically symmetric potential (ki < 0 and

kf > 0), if |ki| = |kf | (elastic scattering), the magnitude Al is directly proportional

to the degree of inelasticity of the transition. If the transition is completely elastic,

Al = 1; if the transition is completely inelastic, Al = 0. Each S-matrix element can

be thought of as describing the rotation of an incoming wave by an angle δl relative

to propagation through free space.

More precisely, assume propagation of a wave through no potential (V̂ = 0).

There will be no scattering, and therefore the S-matrix should be purely diagonal,

but it is still not precisely defined because it may differ by an overall global phase.

Let δl = 0 in this case be the reference for the angle to define the global phase factor.

For an arbitrary reflective potential, the scattering rotation is given by δl. The factor

of 2 simply takes into account a particle’s reflection. The particle traverses the same

distance in space twice, once as an incoming wave and once as a reflected wave.

There are other definitions of the global phase, resulting in other matrices, such

as the T-matrix and K-matrix. These matrices are all related to one another, and

provide no additional fundamental information [6]. Therefore, the S-matrix is used

throughout this thesis.

3.5 Channel Packet Method

Several methods have been devised to calculate S-matrix elements. In this thesis,

a method devised by David J. Tannor and David E. Weeks in 1993 [18] called the

Channel Packet Method is used. This method may be outlined as follows:

• Choose an initial wave packet entirely in either +k or −k space, and located
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anywhere in position space

• Propagate the initial wave packet under the Møller initial operator to obtain

the Møller initial state

• Choose a final wave packet state entirely in either +k or −k space, and located

anywhere in position space

• Propagate the final wave packet under the Møller final operator to obtain the

Møller final state

Propagate the Møller initial state forward in time under the full Hamiltonian:

• Propagate by ∆t using the method described in Chapter II

• Build the correlation function by recording the projection on to the Møller final

state as a function of time

Terminate propagation when future contribution to correlation function is negligible

• Take the Fourier transform of the correlation function in energy space

• Compute the S-matrix element for each value of interest using Equation (25)

The Møller initial (+) and final (-) operators are defined as follows (where Ĥ0 is

the asymptotic Hamiltonian, and Ĥ is the full Hamiltonian):

Ω̂± = lim
t→∞

e∓iĤte±iĤ0t (24)

Physically, the Møller initial (final) operator propagates a wave packet backward

(forward) in time under the asymptotic Hamiltonian, then forward (backward) in time

to time t = 0 under the full Hamiltonian. If the wave packet is entirely contained in

the asymptotic Hamiltonian, there is no net effect.
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Table 2. Expansion coefficients to determine S-matrix elements

S+k,+k S+k,−k S−k,+k S−k,−k
η+(k) = 0 for: k < 0 k > 0 k < 0 k > 0
η−(k) = 0 for: k < 0 k < 0 k > 0 k > 0

It is important to eliminate any influence of the initial wave packet choice on the

observed S-matrix elements. Therefore, to compute the S-matrix elements at each

k-value, it is necessary to normalize by the following equation:

〈kf |Ŝ|ki〉 = Skf ,ki
=

~|k|〈ψ−|A+
E〉

2πmη∗−(kf )η+(ki)
(25)

In this equation, ψ− is the Møller final state and ψ+ is the Møller initial state. η−

is the expansion coefficient of ψ−, and η+ is similarly the expansion coefficient of ψ+.

〈ψ−|A+
E〉 is the Fourier transform of the correlation function:

〈ψ−|A+
E〉 =

∫
eiEt〈ψ−|e−iĤt|ψ+〉 dt (26)

The energy E is the total asymptotic energy, including both potential energy and

kinetic energy. It is calculating 〈ψ−|A+
E〉 that is the essential component of Equation

(25) in the Channel Packet Method; the rest of the equation is just normalization.

In order to more fully understand this quantity, Equation (26) may be rewritten as

[18][21] [22]: (here, ∗ means complex conjugate)

〈ψ−|A+
E〉 =

2πm

|k|
[η∗−(−k)η+(+k)S−k,+k + η∗−(+k)η+(+k)S+k,+k+

η∗−(−k)η+(−k)S−k,−k + η∗−(+k)η+(−k)S+k,−k] (27)

Therefore, at first glance it appears possible to obtain a superposition of S-matrix

elements using this method. Actually, the η±(±k) are expansion coefficients that are
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chosen by the initial wave packet. By judicious choice of the Møller initial and final

states, it is possible to obtain a particular S-matrix element. In fact, since the initial

and final Møller states are spread in k-space, it is possible to obtain a small number of

S-matrix elements using this technique. Table 2 summarizes the appropriate choices

for the Møller initial and final states in order to calculate the desired type of S-matrix

elements.

3.6 Diabatic, Adiabatic, and Coupling Potentials

In many instances, inelastic scattering is of interest. The simplest approach to

modeling inelastic collisions in quantum mechanics is to assume only two states are

involved in the collision. All other contributions are assumed negligible.

In the two-state approximation, the Hamiltonian is now a 2x2 matrix at each

point in either position or momentum space. Unfortunately, the Hamiltonian for a

general system is not diagonal in both position space and momentum space through

only the Fourier transform. This is due to an interaction term which models the

off-diagonal probability amplitude of transitioning from state 2 to state 1 (or vice

versa). This amplitude is assumed to be real, and is known as the coupling potential.

The potentials which diagonalize the Hamiltonian in momentum space are known

as the diabatic potentials, while the potentials which diagonalize the Hamiltonian in

position space are known as the adiabatic potentials.

Through straightforward linear algebra techniques, it is possible to obtain the adi-

abatic potentials from the diabatic potentials and the coupling potential by obtaining

the eigenvalues and eigenvectors of a 2x2 matrix at each point in space. That is, for

a given point in space, the diabatic potential takes the following form [4]:
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 V11(r) V12(r)

V12(r) V22(r)


This matrix is symmetric and real, and therefore the eigenvectors simply form a

rotation matrix.

The Channel Packet Method is unchanged by the two-state approximation, other

than tracking on which of the two potential surfaces the Møller initial and final

states are located. However, when propagating the wave packet, exponentiating an

operator makes sense only in the diagonal representation of that operator. Therefore,

it is necessary to convert from the diabatic to the adiabatic representation prior to

applying the potential energy operator V̂ , and it is necessary to convert from the

adiabatic representation to the diabatic representation prior to applying the kinetic

energy operator T̂ [4]. This ensures the operators T̂ and V̂ , which are now 2x2

matrices at each point in space, are diagonal prior to exponentiation.

Since both the adiabatic and diabatic representations are required to perform the

wave packet propagation, it is natural to ask what minimum amount of information is

sufficient in order to obtain both the adiabatic and diabatic representations. Any one

of the following triplets of information is sufficient in order to obtain the full diabatic

and adiabatic potentials:

• Both diabatic potentials and the coupling potential

• Both adiabatic potentials and the coupling potential

• Both adiabatic potentials and the rotation angle as a function of position

For a more detailed discussion of how to convert between diabatic and adiabatic

representations, to include a procedure to estimate the diabatic potentials from the
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adiabatic potentials and the crossing point, the reader is referred to Faist, Levine,

and Bernstein [10][11].

3.7 Determination of Scattering Cross-Sections

Scattering cross sections are a direct result of collisional interactions.

As discussed in Chapter II, the 3-D spherically symmetric central potential prob-

lem may be reduced to one dimension. From Equation (16), the angular dependence

can be captured by introducing an effective potential term [6][7]:

Veff (r) = V (r) +
l(l + 1)~2

2mr2
(28)

The elastic, collisional (absorption), and total cross-sections for a spherically sym-

metric potential (where ki < 0 and kf > 0 are the only nonzero entries) are calculated

as follows [7]:

σi→i = σel =
π

k2

∞∑
l=0

(2l + 1)|1− Sli,i|2 (29)

σi→f = σcoll =
π

k2

∞∑
l=0

(2l + 1)|Slf,i|2 (30)

σtot =
∑
j

σi→j =
2π

k2

∞∑
l=0

(2l + 1)(1−<(Sli,i)) (31)

In these equations, it is assumed that i, f , and j are state labels, and that f 6= i.

For the total cross section, the summation is over both j = i (elastic) and j 6= i

(inelastic) cross sections.

Calculation of σi→f (f 6= i) is the primary goal of this thesis. Theoretically, σtot

could be calculated independently to determine an error estimate for σi→f , but in
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practice, it was found that σel (and therefore σtot) required a summation over a larger

range of l values, and therefore, this approach was not used as an error estimate.

Further details are discussed in Chapters IV and V.

3.8 Transition Rates and Cross Sections

The scattering cross sections in Equations (29-31) assume only a single energy is

present in the system. In experimental measurements, there is some distribution of

energies (generally assumed to be a Boltzmann distribution). Therefore, the results

from the Method of Partial Waves must be convolved with a Boltzmann disbribution

centered at the desired temperature of interest to account for the statistical mechanics

of the system.

Fortunately, using the Channel Packet Method, the S-matrix element for a wide

range of energies may be calculated simultaneously. The data presented in this thesis

is the raw distribution from the Method of Partial Waves, prior to convolution with

a distribution function.

This thesis is primarily concerned with calculation of cross sections, from which

the transition rate may be obtained [9].
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IV. Numeric Considerations

4.1 Overview

The sequential procedure employed in this thesis for calculating a cross section is

as follows:

• Determine the range of energies to obtain cross section information across

• Determine the Hamiltonian, wave packet, and base propagation parameters

• Determine rmax and kmax from these inputs and a tolerable minimum level of

error

• Determine lmax using Equation (36)

For each l value from 0 to lmax:

• Propagate the wave packet through this effective potential and obtain the scat-

tering matrix elements using the procedure described in Chapter II

For each k-value that contains numerically stable information:

• Combine all scattering matrix elements to obtain σi→f using Equation (30)

Continue the above process until σi→f has converged over the range of energies

of interest.

The remainder of this chapter focuses on numerical pitfalls and suggestions to

optimize parameter choice, as well as a few suggestions on how to perform error

analysis.

23



4.2 General Guidelines on Input Parameters

To obtain an experimentally observed cross section, it is necessary to obtain sev-

eral different absorption cross sections and convolve the results with the Boltzmann

distribution. Using the Channel Packet Method, it is possible even in the presence of

numerical error to calculate many cross sections from a single set of propagation val-

ues, provided all of the k-values are sufficiently close to the initial maximum k-value

to minimize numerical error in the calculation of the S-matrix elements.

Recall that ∆x∆k = 1/2 (atomic units) for our chosen Gaussian at t = 0. It is

therefore desirable for ∆k to be as large as possible, and thus ∆x as small as possible,

within the following limits:

• The initial k values of the wave packet and the k of the Møller packet must

either be all positive or all negative (to within an acceptable degree of error),

although the wave packet may be all −k and the Møller final packet all −k, or

vice versa.

• Smaller ∆x means a larger number of sampling points is required to minimize

propagation error and obtain an accurate value for the projection onto the

Møller final packet.

A good rough rule of thumb is the resulting scattering data will be valid in the

range k0 ± 3∆k. This is merely a rough gideline for setting parameter information

at the start, and is not guaranteed. It is based only on my experience in analyzing

scattering data in the absence of significant propagation errors, although there are

several factors which may cause the actual performance to be worse (or better).

The sections that follow contain analysis to ensure the code is functional.
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Figure 1. Gaussian wave packet propagated through 100 time steps and compared to
the analytic solution for a free particle.

4.3 Propagation

To verify the propagator code developed operates correctly, two test potentials

were used where the analytic solutions are known in each case. Propagation through

free space (V̂ = 0) is the simplest case of wave packet propagation, and propagation

in the ground state of a harmonic oscillator (V̂ = 1/2mω2x̂2) results in a coherent

state.
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Figure 2. Wave packet for diatomic Hydrogen propagated to a time of 1728 au in a
harmonic oscillator as a coherent state and compared to analytic solution

4.3.1 Free Space Propagation.

In free space (V̂ = 0), the time evolution of the initial Gaussian wave packet given

by equation 17 may be determined analytically as follows:

ψ(x, t) =

(
1

2π(∆x0)2

)1/4(
1 +

i~t
2(∆x0)2m

)−1/2

×

exp

− (x−x0)2

4(∆x0)2
+ ik0(x− x0)− ik2

0
~t
2m

1 + i~t
2(∆x0)2m

 (32)

A wave packet was propagated through 100 iterations and compared to this ana-

lytic result. Results are shown in Figure (1).
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4.3.2 Coherent State Propagation.

To verify the propagation code worked with a potential applied, it was tested

against a coherent state. A coherent state is a state in which the exectation value is

identical to the classical expectation value with time, both for the position and the

momentum, and the magnitude remains constant with time – the wave packet does not

spread [8]. This makes a very convenient test case, since several quantum mechanical

properties can now be compared to their classical analogue, and an analytic form may

be specified.

To perform this test, the following parameters were used:

----------------------------------------------------------------------

Initial Gaussian Wave Packet Parameters

----------------------------------------------------------------------

x0 = 5.0000000E+000 k0 = 0.0000000E+000 dx0 = 2.3338001E-001

m = 9.1800000E+002

<x> = 5.0000000E+000

----------------------------------------------------------------------

Hamiltonian Parameters

----------------------------------------------------------------------

Kinetic: Normal

Potential: Simple Harmonic Oscillator

m = 9.1800000E+002 w = 1.0000000E-002 x0 = 0.0000000E+000

Angular Momentum: l = 0

Boundary Conditions: None

----------------------------------------------------------------------

Propagation Parameters

----------------------------------------------------------------------

x =-1.0000000E+002 to 1.0000000E+002; dx = 2.4417043E-002 (N = 8192)

k =-1.2863252E+002 to 1.2866393E+002; dk = 3.1412092E-002

t = 0.0000000E+000 to 2.0000000E+003; dt = 1.0000000E+000

(iterations: 2000)

----------------------------------------------------------------------

N is the number of points in the discretization. All values are in atomic units.

This wave packet was propagated through time and compared to the analytic

solution at a few data points. The results are plotted in Figure 2, where it is clear
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the analytic and computed points match up precisely. The expectation value of

the position is also examined as a function of time and plotted in Figure 3. The

expectation value fits to y = 5 cos(0.01t), as expected from the inputs, with an RMS

error of 4.206× 10−10. Finally, for a coherent state, the packet should have no spread

in time. Since 〈ψ|ψ〉 = 1 and the wave packet maintains a Gaussian shape, it is

sufficient to examine the maximum value of the magnitude of the wave function as

a function of time to ensure it remains constant. These results are plotted in Figure

4. All of these tests performed as expected, indicating the propagation code worked

properly.

4.4 Scattering Calculations

To verify the calculation of scattering matrix elements after propagation, there

are two approaches that may be used. The first approach is to simply propagate a

wave packet through no potential and calculate the S-matrix elements, which should

all be 1, since the S-matrix global phase factor is defined by this value. The second

method is to propagate a wave packet through a square potential without absorbing

boundary conditions until the packet has propagated completely through the potential

and ensuring the square of the S-matrix elements match with the ratio of transmitted

packet to initial packet, and reflected packet to initial packet. Since the propagator

code was verified in the previous section using a separate technique, this shows the

scattering calculations are performed correctly.

4.4.1 “Scattering” through free space.

The following parameters were used to calculate the scattering matrix elements

through free space:

-------------------------------------------------------------------
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Initial Gaussian Wave Packet Parameters

-------------------------------------------------------------------

x0 = 9.0000000E+001 k0 = 8.0000000E+000 dx0 = 5.0000000E-001

m = 9.1800000E+002 (atomic units)

<x> = 9.0000000E+001

-------------------------------------------------------------------

Moller Final State Parameters

-------------------------------------------------------------------

x0 = 1.1000000E+002 k0 = 8.0000000E+000 dx0 = 5.0000000E-001

m = 9.1800000E+002 (atomic units)

-------------------------------------------------------------------

Hamiltonian Parameters

-------------------------------------------------------------------

Kinetic: Normal

Potential: None

Angular Momentum: l = 0

Boundary Conditions: None

-------------------------------------------------------------------

Propagation Parameters

-------------------------------------------------------------------

x = 0.0000000E+000 to 3.0000000E+002; dx = 3.6625565E-002

(N = 8192)

k =-8.5755010E+001 to 8.5775951E+001; dk = 2.0941394E-002

t = 0.0000000E+000 to 8.0000000E+003; dt = 1.0000000E+000

(iterations: 8000)

-------------------------------------------------------------------

Clearly in this case the “scattering” is elastic, so ki = kf . The expected result is

for the real part of the scattering matrix element to be 1 and the imaginary part of

the scattering matrix element to be 0.

Figure 5 contains the actual results. Since ∆x = 0.5 for this run, ∆k = 1 because

∆x∆k = 1/2 for a Gaussian at t = 0. The results become less accurate with increasing

distance from k0. Beyond around 4∆k, the data becomes completely unreliable as

numerical error due to the small values of the wave packet and finite storage of

double-precision numbers overshadow any computation of the actual matrix element.
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Figure 5. “Scattering” through no potential for a wave packet centered at k0 = 8 with
∆k = 1 (∆x = 0.5). Only data within about 4∆k is close to the correct value, with
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4.4.2 Scattering through a Square Potential.

A simple conservation of energy calculation was performed through a square poten-

tial to further verify the scattering code. When scattering through a square potential

that is 0 on both sides and has a depth −V0, there are two possible results: reflection

and transmission.

Assume the initial wave packet |ψ0〉 is entirely in +k space, with initial momentum

+k0, and completely outside the square potential. Propagate the wave packet through

the square potential until it has passed completely through the square potential and is

either entirely reflected or entirely transmitted; let this final state be |ψf〉. Calculate

the S-matrix elements for transmission (in +k space beyond the square well) and

reflection (in −k space before the square well); let ST and SR represent these S-

matrices. |ST (k)|2 + |SR(k)|2 = 1 for all values of k (there is no other possible state
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Figure 6. Initial conditions for propagation of wave packet through square potential

for the packet).

Another test may be performed if absorbing boundary conditions are not used.

The following equations hold for a square potential [19]:

T =
|〈+k|ψf〉|2

|〈+k|ψ0〉|2
(33)

R =
|〈−k|ψf〉|2

|〈+k|ψ0〉|2
(34)

Due to numerical error, it is expected that these equations will hold only for initial

k sufficiently close to k0. To test the scattering code for transmission, the following

parameters were used (as illustrated in Figure 6):

---------------------------------------------------------------------

Initial Gaussian Wave Packet Parameters

---------------------------------------------------------------------

x0 = 2.8500000E+002 k0 = 4.0000000E+000 dx0 = 1.0000000E+000

m = 9.1800000E+002 (atomic units)
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<x> = 2.8500000E+002

---------------------------------------------------------------------

Moller Final State Parameters

---------------------------------------------------------------------

x0 = 3.1500000E+002 k0 = 4.0000000E+000 dx0 = 1.0000000E+000

m = 9.1800000E+002 (atomic units)

---------------------------------------------------------------------

Hamiltonian Parameters

---------------------------------------------------------------------

Kinetic: Normal

Potential: Square Well

xmin = 2.9500000E+002 xmax = 3.0500000E+002 h =-5.0000000E-002

yl = 0.0000000E+000 yu = 0.0000000E+000

Angular Momentum: l = 0

Boundary Conditions: None

---------------------------------------------------------------------

Propagation Parameters

---------------------------------------------------------------------

x = 0.0000000E+000 to 6.0000000E+002; dx = 3.6623329E-002

(N = 16384)

k =-8.5770716E+001 to 8.5781187E+001; dk = 1.0471336E-002

t = 0.0000000E+000 to 1.5000000E+004; dt = 1.0000000E+000

(iterations: 15000)

---------------------------------------------------------------------

A second scattering calculation was performed with identical parameters, except

with the Møller final state centered at x0 = 280 and k0 = −4 to detect the reflection

from the square potential. In the propagation, it is instructive to note a few features

which illustrate the importance of scattering off a potential that may not be intuitive

due to the wavelike nature of quantum mechanics.

In Figure 7, the expectation value has reached the edge of the potential well. The

shape of the Gaussian has changed as expected because some of the packet has reached

this lower potential, and thus has gained energy. However, due to the wavelike nature

of quantum mechanics, there has been some reflection off the potential change as well,

resulting in interference in the packet even before the potential has been reached, and

nonzero negative k.
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Figure 7. Propagation through square potential at time of 2200 au
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Figure 8. Propagation through square potential at time of 3700 au
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In Figure 8, it is quite obvious that only some of the wave is being transmitted

and some of the wave is being reflected. Interference is causing only certain k values

to be present. Some of the packet is bouncing around inside the potential, while some

of the packet has been able to escape from the potential. The resulting transmitted

and reflected packets are taking shape, and the transmitted packet is beginning to

reach the Møller final state.

Figures 9 and 10 show the propagation at final time with the transmission and

reflection Møller final states, respectively. Under this set of parameters, the trans-

mission Møller final state exactly matches the initial wave packet in k-space, and the

reflection Møller final state is the same as the initial except at −k. The packet is,

in each case, beyond the Møller final state in position space, and at no point does

it possess more magnitude in |k| than it originally had, illustrating the collision was

elastic. Certain values of |k| were reflected, while other values of |k| were transmitted,

depending on the structure of the square potential. Equations (33-34) may now be

understood visually – it is the ratio of the current value with the initial value that pro-

vides the transmission coefficient (and similarly in −k space, since it E = ~2k2/(2m),

so the sign of k is irrelevent in determining the energy).

Figures 11 and 12 show the correlation function for transmission and reflection

inputs, respectively. At each time step of the propagation, the result in position space

is projected onto the Møller final state in position space, and this value is recorded as

the value of 〈ψ−|e−iĤt|ψ+〉. As indicated by Equation (26), it is the Fourier transform

of this function in energy space that provides the S-matrix elements.

Another interesting problem is encountered here from a numeric perspective.

Equally spaced points in position and k are natural choices for the propagation of

the wave packet. At each time step, two Fourier transforms are necessary in the

Split Operator propagation scheme used, as shown in Equation (13). Therefore, it is
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Figure 12. Correlation function of reflection off square potential
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ideal to perform these Fourier transforms as rapidly as possible. The fastest known

algorithm today is the Fast Fourier Transform, which relies on equally-spaced inputs.

However, when taking the inverse Fourier transform to calculate the S-matrix

elements, this Fourier transform is in energy space. Since E = ~2k2/(2m), using

equally spaced points in k means the Fast Fourier Transform cannot be applied in

this calculation through standard techniques. There are three possible solutions to

this problem:

• Equation (25) relies only on the expansion coefficients of the initial and final

states, which we have assumed are Gaussian. The Fast Fourier Transform may

be applied, and the necessary expansion coefficients may be calculated for each

energy value using Equation (18). Although not generally applicable, the code

already makes the assumption that the Møller states are Gaussian wave packets,

and therefore are placed in the asymptotic limit of the potential.

• Since the Fourier transform of the correlation function is one-time work and

the Fourier transforms for propagation are every iteration work, it is possible to

maintain generality by simply using the full Fourier transform integral expres-

sion instead of the Fast Fourier Transform to compute the S-matrix elements,

and use the Fast Fourier Transform for the much more frequent propagation

calculations. This maintans generality, at the expense of some computational

cycles. However, it was determined that the computational cost was not that

great, so this approach was taken in the code in Appendix B.

• It seems plausible to modify the Fast Fourier Transform algorithm to work with

data points spaced as
√
E, allowing both generality and speed to be preserved,

but the details of this approach were not explored, as the runtime with the

full Fourier transform for calculating scattering was negligible compared to the
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runtime for propagation.

Figure 13 shows the magnitudes of transmission and reflection along with the

sum. Again, the data sums to 1 as expected near the central k value of k0 = 4. Here,

∆x = 1, so ∆k = 1/2. The data is observed to be accurate from k = 2.7 to k = 5.3.

Outside that range, the data deviates noticeably from this sum.

It is also possible to compare for a square potential using Equations (33) and (34).

These results are plotted in Figures 14 and 15 for transmission and reflection calcu-

lations, respectively. Similar results are observed. Outside the range from k = 2.7 to

5.5 significant deviations begin to appear, at first gradually, then rapidly growing to

overtake any semblance of a reasonable estimate of the actual value.s
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4.4.3 Scattering Through a Spherical Central Potential.

For a spherical central potential, the procedure is similar, and a detailed example

with coupling will be explored in Chapter V. The key difference is that scattering is

completely reflective in this case. If there is no coupling, all scattering matrix elements

should have a magnitude of 1, but the scattering angles will differ. Therefore, the

calculation of scattering angles becomes essential for understanding scattering off a

spherically symmetric central potential.

If coupling between multiple states is introduced, the magnitude of the scattering

matrix elements may be less than 1, representing the transition from the starting

state to another state. The magnitude of the S-matrix element quantifies the extent

of the transition.

4.5 Cross Section Calculations

Cross section calculations follow naturally from the theoretical considerations pre-

viously discussed in Chapter III, with two minor modifications. First, the sums in

Equations (29-31) are infinite, and the wave packet propagation for realistic potentials

is generally the most computationally intensive step, so minimizing the required num-

ber of iterations in this sum while still converging to a reasonable answer is desired.

Cohen-Tannoudji provided a method of truncating the sum [7].

From Equation (28), with increasing l, the point is reached where the following

approximation holds:

Veff ≈
l(l + 1)~2

2mr2
(35)

When this point is reached, the potential V (r) is no longer interrogated by a wave

with energy k. Let rmax be the maximum r-value with non-negligible potential and
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kmax is the maximum k-value (in absolute value):

√
lmax(lmax + 1) ≈ kmaxrmax (36)

It is possible, depending on the exact potentials and wave packet dynamics, that

the sum may be truncated sooner, when the contributions to the cross-section are

below a certain threshold value. However, the above analysis provides a good starting

point to estimate the cutoff for the sum for an arbitrary potential. By comparing the

results for l ≈ lmax, it is possible to determine whether the solution has converged or

whether further propagations are required.

The other numerical issue in calculationg cross-sections is due to Equations (29-

31). These equations are theoretically never negative, as expected, since a negative

contribution to the cross-section makes no physical sense, but numerically, even for

values near k0, the magnitude of the S-matrix element may be slightly greater than

1, resulting in a computationally calculated negative cross section contribution. In

order to avoid this effect, it is necessary to force the maximum value of the magnitude

of the S-matrix elements to be 1. In Equations (29) and (30), it is not necessary to

force the minimum value of the magnitude of the S-matrix elements to be 0, as |S(k)|2

cannot be negative, even under ill numeric conditions.

4.6 Error Analysis

When considering error, it is of vital importance to recognize that error is a

strong function of k (and therefore of
√
E) due to the presence of numerical error in

the discretization process and chosen initial wave packet. The code contains many

redundancies to help with error analysis as a function of k when outputting the results

for the S-matrix and cross section calculations.

Some suggested ways to estimate algorithmic error are as follows:
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• Calculate the S-matrix elements for all cases (reflection and transmission, elastic

and inelastic) that are expected from the specified potential. The sum of the

square of the magnitude for all S-matrix elements for a given ki should be 1;

deviations give a reasonable error estimate for |S(k)|2 as a function of k.

• From the S-matrix elements, the total, absorption, and elastic cross sections are

all calculated. Theoretically, this is redundant, as σtot =
∑
σi→j. This extra

level of redundancy in output can also be checked to further estimate the error

in the cross-section calculations. It is important to note that lmax may differ

for σel and σi→f . This method may only be used if both σi→f and σel have

converged.

• In the code, the command-line option -n=# may be used to specify a minimal

error tolerance; the default is 1e−10. This specifies a lower bound on the error,

although the actual error present is likely to be much larger than this value and

depends on multiple parameters. Additionally, -M=# may be used to specify a

user-defined value for lmax.

• Algorithmic error in propagation scales as O(t3). It is possible to estimate the

magnitude of this propagation error by comparing the error in S-matrix elements

calculated with ∆t = t0, then repeating the calculation with ∆t = t0/2.

• Propagator error may also arise from the spacing in position space and k-space.

To reduce the spacing in k-space, it is necessary to sample over a larger space

in x. To reduce the spacing in x-space, it is necessary to increase the number

of data points.
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V. Alkali-Noble Gas Scattering Cross Sections

5.1 Overview

In Diode Pumped Alkali Lasers (DPALs), collisional de-excitation between the

2P3/2 and 2P1/2 states is responsible for moving atoms from the upper pump state to

the upper lasing state. To establish a population inversion necessary for lasing, this

collisional transition should be maximized.

A reasonable approximation of the DPAL system is an alkali colliding with an

inert gas. Although Rb and Cs are the most common alkalis for DPAL systems

due to their large fine structure splitting, which allows pumping into the 2P3/2 state

without pumping the 2P1/2 state, it is significantly more difficult to develop potentials

for Rb-Noble Gas and Cs-Noble Gas systems. Therefore, in this section, LiHe will be

considered.

Under this physical model, it was assumed that He is in its ground 1S0 state,

and Li was already in the excited 2P3/2 state. Therefore, E = 0 will be set to the

asymptotic energy of the 2P3/2 state for convenience. Only fine structure coupling

between the 2P3/2 and 2P1/2 states were permitted. Coupling between other states

was neglected, and the hyperfine splitting of each fine structure state was ignored.

This led to a two-state system.

The following tasks were performed:

• Calculate the cross sections for absorption, elastic collisions, and total colli-

sions for LiHe by calculating S-matrix elements starting on the 2P3/2 state and

propagating through the LiHe potential.

• Calculate S-matrix elements for the inelastic 2P3/2 to 2P1/2 collision for a single

effective potential with all other inputs the same. Sum with the S-matrix for

elastic scattering to obtain a reasonable error estimate as a function of k.
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5.2 Parameters

Estimated reasonable operating temperatures for the system are around 500K.

In particular, it would be desirable to obtain cross sections in the range from 300

to 1000K, corresponding to energies of 0.000950050 to 0.00316683 Hartree. These

results may then be convoluted with a distribution function to obtain experimentally

significant results.

The atomic nuclear mass of Li is 12863.2 au, and He is 7349.67 au. This leads to a

reduced mass of 4677.23 au. Under this mass, using |k| =
√

2mE/~, |kmin| = 2.98114

and |kmax| = 5.44280. This indicates a wave packet centered at k ≈ −4.2 with a

width of ∆k ≈ 0.65, and therefore ∆x = 0.77 ≈ 0.8, is reasonable. The desired

S-matrix elements are S+k,−k – the wave packet starts at large r where the potential

is negligible, the propagates inward to small r (−k direction) until it is reflected out

(in the +k direction). It must be remembered that the initial Gaussian must be

negligible in +k space for the Channel Packet Method to succeed, as shown in Table

2. Therefore, ∆k cannot be made too large or a superposition of S-matrix elements

will be obtained, as shown in Equation (27). Too small of a ∆k is also bad, as shown

in Chapter IV, as numeric error overtakes any computational accuracy beyond a range

of roughly k0 ± 3∆k. Finally, it is desirable to get as many S-matrix elements in the

energy range of interest with a single run of the Channel Packet Method in order to

minimize propagation time, which is another reason to make ∆k reasonably large,

provided the overlap at k = 0 is negligible.

For a spherically symmetric problem, it is possible to estimate the propagation

time required based upon the position of the initial packets and the minimum k value

to obtain data for. Since p = ~k, it is possible to estimate the minimum velocity

as vmin = ~k/m. Assuming the minimum position value is at x = 0 and the Møller

initial and wave packets are at xp, then a rough estimate of the time required can be
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obtained by assuming constant velocity:

tmax ≈
2xpm

~k
(37)

In actuality, since the effective potential for large l will slow down the wave packet,

a somewhat larger value of tmax is generally required, but this gives a rough estimate

of the value to use.

5.3 Potentials

The potentials are the most questionable part of the set of inputs for these LiHe

calculations, and therefore the most likely source of error. Numerous attempts have

been made to calculate the potentials for the LiHe interaction [15][16]. However, it is

critical to note that these calculations generally include only the adiabatic potentials,

and not the diabatic potentials or the interaction potential. Therefore, only part of

the input set required is given in most papers. It is necessary to include a method of

estimating the diabatic potentials from the adiabatic potentials. Fortunately, there

is a method given in [10] and [11]. This method was applied to LiHe in [9]. The

diabatic potentials provided in these sources are just an estimate, and depends upon

knowledge of the crossing point of the diabatic potentials. For reasonable propagation

parameters it is expected that error in this interaction potential (and thus the diabatic

potentials) is the primary source of error in the cross section calculations.

There are a total of 6 states comprising the 2P level. These states are the 2P1/2,±1/2,

2P3/2,±1/2, and 2P3/2,±3/2. In the adiabatic representation, these potentials form the

A2Π1/2, B2Σ+, and A2Π3/2 states, respectively [9]. Therefore, to properly model this

system, it appears a 6x6 matrix is required. This may be simplified into two block

diagonal 3x3 matrices by assuming spin does not flip as a result of the collision. It is

only necessary to solve one of these 3x3 matrices.
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Figure 16. Adiabatic potentials for Li-He
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Figure 17. Adiabatic potentials used in propagation scheme, zoomed in at avoided
crossing point
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This may be further simplified by neglecting rotational (Coriolis) coupling [9].

This decouples the A2Π1/2 and A2Π3/2 states. It is sufficient to consider the following

matrix of potentials (where each potential is a function of r):

 V3/2,3/2 V3/2,1/2

V1/2,3/2 V1/2,1/2


Here, the subscript 3/2 refers to the 2P3/2,+1/2 state, and the subscript 1/2 refers

to the 2P1/2,+1/2 state. V3/2,1/2 = V1/2,3/2, so a 2x2 symmetric matrix is obtained as

described in Chapter II. The V3/2,1/2 represents an approximation to the derivative

coupling terms. The derivative coupling terms arise from the breakdown of the Born-

Oppenheimer approximation. The eigenvalues of the 2x2 matrix are the adiabatic

potentials. The eigenvectors of this matrix are described by a rotation matrix at each

point in r:

C(r) =

 cos(θ(r)) sin(θ(r))

− sin(θ(r)) cos(θ(r))


The adiabatic potentials chosen for use in this work were obtained from a Ph.D.

student at the Air Force Institute of Technology and are pending publication [5]. The

potentials are plotted in Figures 16 and 17. The avoided crossing occurs at 17 au, as

illustrated clearly by Figure 17. From these potentials, it was possible to calculate an

estimated interaction potential using the procedure in [9], [10], and [11]. It cannot be

overemphasized that this procedure is approximate. In particular, Faist indicates the

interaction potential is not very accurate for r << Rx, where Rx is the crossing point.

Fortunately, this error should be relatively small, as the packet cannot propagate very

far beyond the crossing point for low (≈ 10−3 Hartree) energy.

The following equation for θ(r) was used[10][11]:
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θ(r) =


π
4

+ 1
2

tan−1(γ)− 1
2

tan−1(2α(r −Rx) + γ) for r ≤ R0

0 for r > R0

(38)

where

R0 = Rx +
1

2α

[
tan
(π

2
+ tan−1(γ)

)
− γ
]

The parameters α and γ may be estimated from the difference potential. α =

1.2122 and γ = −1.484 were used, with Rx = 17 for the crossing point. The potential

near the crossing was well-behaved. However, the potential was strongly modified

even far from the crossing point. θ(r) is plotted for the LiHe system in Figure 18.
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5.4 Results

5.4.1 Propagation.

To begin exploring the cross section for the LiHe problem, the following propaga-

tion parameters were used:

----------------------------------------------------------------------

Initial Gaussian Wave Packet Parameters

----------------------------------------------------------------------

x0 = 4.0000000E+001 k0 =-4.2000000E+000 dx0 = 8.0000000E-001

m = 4.6772300E+003 (atomic units)

Packet all on Potential #1 initially

<x> = 4.0000000E+001

----------------------------------------------------------------------

Moller Final State Parameters

----------------------------------------------------------------------

x0 = 5.0000000E+001 k0 = 4.2000000E+000 dx0 = 8.0000000E-001

m = 4.6772300E+003 (atomic units)

Moller state on Potential #1

----------------------------------------------------------------------

Hamiltonian Parameters

----------------------------------------------------------------------

Kinetic: Normal

# of potentials = 2

Potential #1

Potential: Interpolation (Linear Spline): ../LiHe_dia_p32_full_17.dat

Angular Momentum: l = 0

Boundary Conditions: Gaussian (Absorbing)

Mag = 1.0000000E+000 dx0 = 1.0000000E+001

Spherically Symmetric

Potential #2

Potential: Interpolation (Linear Spline): ../LiHe_dia_p12_full_17.dat

Angular Momentum: l = 0

Boundary Conditions: Gaussian (Absorbing)

Mag = 1.0000000E+000 dx0 = 1.0000000E+001

Spherically Symmetric

50



0 20 40
−0.2

0

0.2

0.4

0.6

0.8

Position (au)

M
a

g
n

itu
d

e

2P
3/2

0 20 40
−0.2

0

0.2

0.4

0.6

0.8

Position (au)

M
a

g
n

itu
d

e

2P
1/2

−10 0 10
−0.2

0

0.2

0.4

0.6

0.8

k (au)

M
a

g
n

itu
d

e

−10 0 10
−0.2

0

0.2

0.4

0.6

0.8

k (au)

M
a

g
n

itu
d

e

Figure 19. Propagation to t = 45000 au for l = 0. The absolute value of the initial
momentum is the dashed line. The packet has mixed strongly due to the interaction
potential.

Coupling Potential

Potential: Interpolation (Linear Spline): ../LiHe_dia_V12_full_17.dat

----------------------------------------------------------------------

Propagation Parameters

----------------------------------------------------------------------

x = 0.0000000E+000 to 3.2000000E+002; dx = 9.7659230E-003 (N = 32768)

k =-3.2166964E+002 to 3.2168927E+002; dk = 1.9634355E-002

t = 0.0000000E+000 to 4.0000000E+005; dt = 1.0000000E+000

(iterations: 400000)

----------------------------------------------------------------------
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Figure 19 contains intermediate results of the propagation for diabatic potentials

calculated at t = 45, 000 au for l = 0 (no effective potential). At this point in

the propagation, a significant amount of mixing has occurred between the upper and

lower states. Figure 20 shows the correlation functions from t = 55, 000 to 160, 000 au,

where the maximum correlation occurs on the inelastic state in all three cases. This

reinforces the significant difference between the amount of wave packet transferred

using each of the three methods of calculating the diabatic potential.

5.4.2 Scattering.

From the propagation parameters, scattering matrix calculations were obtained

using the Channel Packet Method.

For the case of no effective potential modification (l = 0), the results are plotted

in k-space in Figure 21, and in the more conventional energy space in Figure 22.

It is advantageous to observe the behavior in both representations to perform error
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analysis. In k-space, the points are equally spaced, and it is clear that the numeric

error becomes significant at approximately k0 ± 3 au. In energy space, keeping in

mind E = (~k)2/(2m), the points are no longer equally spaced, so errors at larger

energies (and thus large |k|) are somewhat magnified due to the relative sparsity of

data points as compared to with small energy (and thus small |k|).

By examining the sum of the inelastic and elastic cross sections when l 6= 0, it

was discovered that even for small effective potentials, the Gaussian shape was not

a good approximation for the shape of the Møller state centered at 40 au. In Figure

23, the S-matrix elements for inelastic and elastic scattering do not always sum to 1.

In order to discover the reason for the failure for l 6= 0, using a more coarse

calculation (N = 4096 and xmax = 100), the center of the Gaussian wave packet was

moved to 30, 35, 40, and 50 au, respectively, for l = 5 and l = 10 to observe the

effects on the scattering matrix elements. Also, a truncated effective potential was

investigated, under the following form:

Veff,tr(x) =


Veff (x) for x ≤ xc

0 for x > 0

(39)

Here, xc is the cutoff point for the potential. Figure 24 contains the results for

l = 5, and Figure 25 contains the results for l = 10. In both cases, it is observed

that the sum of the inelastic and elastic scattering matrix elements are 1 over a wider

range as the wave packet is moved out, and for the truncated effective potential the

results are exactly as expected.

This means the Gaussian wave packet is not a good approximation for the Møller

initial and final states, even though the effective potential is very small in this region

(7.34e − 6 for l = 10 at x = 40). There are three different ways to handle this

problem. The simplest solution is to move the wave packet out further. While this
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Figure 23. S-matrix elements with different effective potential l values, with a Gaussian
centered at 40 au.
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Figure 25. S-matrix elements for l = 10 with the Gaussian position varied.
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solution appears simple on the surface, it was discovered that for the LiHe interaction,

l values of around 100 were necessary to capture all of the absorption cross section

data. Since the effective potential at a given point in space goes as O(l2), this would

require moving the wave packet out substantially in space, resulting in a substantially

longer propagation. Thus, this solution was not used.

Another possible solution is to develop the Møller state for each effective potential

and use that potential for the initial Møller state. This must be done for all values

of l that are required to perform the calculation. This reduces the propagation time

problem, but requires more computational work up front to determine the initial

Møller state.

Finally, a third solution is to simply truncate the effective potential as in Equation

(39), which ensures the Gaussian is in fact a Møller state, at the expense of introducing

some error from the modified effective potential. This error may be reduced by moving

the wave packet farther out, where the effective potential is smaller. This solution

was pursued by performing a second propagation.

5.4.2.1 Truncated Effective Potential.

For the truncated effective potential propagation, the following parameters were

used:

---------------------------------------------------------------------

Initial Gaussian Wave Packet Parameters

---------------------------------------------------------------------

x0 = 5.0000000E+002 k0 =-4.2000000E+000 dx0 = 7.5000000E-001

m = 4.6772300E+003 (atomic units)

Packet all on Potential #1 initially

<x> = 5.0000000E+002

---------------------------------------------------------------------

Moller Final State Parameters

---------------------------------------------------------------------

x0 = 5.0000000E+002 k0 = 4.2000000E+000 dx0 = 7.5000000E-001

m = 4.6772300E+003 (atomic units)
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Moller state on Potential #2

---------------------------------------------------------------------

Hamiltonian Parameters

---------------------------------------------------------------------

Kinetic: Normal

# of potentials = 2

Potential #1

Potential: Interpolation (Linear Spline): ../LiHe_dia_p32_full_17.dat

Angular Momentum: l = 0; r_max = 4.9000000E+002

Boundary Conditions: Gaussian (Absorbing)

Mag = 1.0000000E+000 dx0 = 7.0000000E+000

Spherically Symmetric

Potential #2

Potential: Interpolation (Linear Spline): ../LiHe_dia_p12_full_17.dat

Angular Momentum: l = 0; r_max = 4.9000000E+002

Boundary Conditions: Gaussian (Absorbing)

Mag = 1.0000000E+000 dx0 = 7.0000000E+000

Spherically Symmetric

Coupling Potential

Potential: Interpolation (Linear Spline): ../LiHe_dia_V12_full_17.dat

---------------------------------------------------------------------

Propagation Parameters

---------------------------------------------------------------------

x = 0.0000000E+000 to 6.0000000E+002; dx = 7.3251129E-002 (N = 8192)

k =-4.2877505E+001 to 4.2887976E+001; dk = 1.0470697E-002

t = 0.0000000E+000 to 5.0000000E+006; dt = 1.0000000E+001

(iterations: 500000)

---------------------------------------------------------------------

The key differences are: propagation over a longer time with a larger time step,

fewer data points to accommodate the increased number of iterations, truncation for

the effective potential above 490 au, and the wave packet and Møller final states

centered at 500 au. The truncation ensured the initial and final Møller states were

Gaussian. Since the packet was moved out significantly, the effect of truncation was
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minimized. At 490 au with l = 100, the effective potential is 4.50e− 6 Hartree.
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Figure 26. S-matrix element magnitude for l = 0, truncated effective potential above
490 au, and a Gaussian centered at 500 au.

To determine the numerically stable range for this new data set, the sum of the

magnitude squared of the scattering matrix elements for l = 0 are plotted in Figure

26. From this figure, the region in which the data is valid to 3 significant figures is

from 3e-4 to 5e-3 Hartree. This region will be referred to as the numerically stable

region. Outside this region, the data is erroneous due to finite machine precision.

Only within this region can the numeric error from using the Channel Packet Method

be assumed to be less than 0.1%.

To confirm correct operation of the method, a comparison was made for the sum

of the elastic and inelastic S-matrix elements at different l values. The effect of l on

the results noted in the previous section was observed to completely vanish. Error

was now entirely due to numeric considerations, as shown in Figure 27. Notice for
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Figure 27. S-matrix elements with different effective potential l values, truncated
effective potential above 490 au, and a Gaussian centered at 500 au.
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l = 100, the elastic scattering magnitude is very close to 1 for all energies that are

numerically stable, so this suggests l = 100 is a good cutoff point to truncate the

summation given in Equation (30). For these potentials, the lower energies are the

first to undergo purely elastic scattering, beginning at around l = 40, followed by

the higher energies. Since S-matrix elements within the numerically stable region all

summed to 1, the results of this propagation could be used to determine absorption

cross sections.

5.4.3 Cross Sections (Derivative Coupling).

Elastic (σi→i), inelastic (σi→f ), and total (σtot) cross sections were calculated using

Equations (29), (30), and (31), respectively. To verify l = 100 is the proper cutoff

point for the cross section calculations, the cross sections were calculated by setting

lmax in increments of 10 – that is, lmax = 0, 10, 20, ..., 100. The results for the absorp-

tion cross section are presented in Figure 28. As expected, the low energies converge

for smaller lmax than the high energies, since a smaller effective potential will cause

the lower energies to be reflected.

By examining the elastic and total cross sections, it was clear that they had not

yet converged to their actual value for any energies. Therefore, only absorption cross

sections are reported. It is the absorption cross section which is of primary interest in

the state transition, so this has minimal effect on the results. It was discovered that

it is necessary to go to much higher lmax to obtain elastic and total cross sections for

the LiHe potentials specified.

5.5 Analysis of Derivative Coupling Approximation

The general trend for the collisional absorption cross section is decreasing with

increasing temperature. Since the absorption cross section is a convolution of this
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Figure 28. σi→f calculated from cross section matrix elements for various cutoff points.
For lmax = 100, the cross sections have converged.
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graph with the Boltzmann distribution and the resonant peaks are relatively narrow,

it would be difficult to focus the energy only in one of the peak resonances. However,

the collisional cross section should increase with decreasing temperature in general.

This effect is not so great for temperatures above 1000 K, as the decrease in absorption

cross section becomes much less dramatic beyond that temperature. However, the

closer to room temperature the system is operated, the larger the collisional cross

section becomes.

Although these qualitative observations agree reasonably with literature, at this

point a more conventional means of obtaining the coupling between two states was

discovered, and this method was disbanded at this point. The problem with the

derivative coupling approximation method used was that the derivative coupling is

hypothesized to be present only near the crossing point, but the approximation yielded

derivative coupling terms far from the crossing point. Therefore, a more straightfor-

ward radial coupling method was used.

5.6 Radial Coupling Between States

There are 3 primary forms of coupling between the 2P3/2 and 2P1/2 states. These

forms of coupling are: derivative coupling (examined by approximation in the previous

section), Coriolis coupling, and radial coupling [9]. Coriolis coupling and derivative

coupling are both neglected in this section. The formulation herein draws heavily

from Alexander [2].

5.6.1 Theory.

Assume the potentials without spin-orbit splitting are calculated. In the P -level,

this would yield 2 non-unique potentials which will be referred to as WΠ and WΣ.

The effect of adding spin-orbit splitting is offset each of these potentials by 3a/2.
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All of these variables are a function of r in the general case, although the spin-orbit

splitting a may be approximated as a constant equal to the value in the asymptotic

limit. Ignoring Coriolis coupling and derivative coupling, and examining only Ω > 0

(since Ω < 0 differs only by a negative sign in the off-diagonal V12 elements), the

potential is as follows:

V =


WΠ + a

2
0 0

0 1
3
(2WΠ +WΣ) + a

2

√
2

3
(WΠ −WΣ)

0
√

2
3

(WΠ −WΣ) 1
3
(WΠ + 2WΣ)− a

 (40)

It is important to note that coupling in this case reduces to simply a 2x2 matrix

where only the electronic angular momentum |J = 3/2,Ω = 1/2〉 and |J = 1/2,Ω =

1/2〉 couple together, as follows:

V =

 V11 V12

V12 V22

 =

 1
3
(2WΠ +WΣ) + a

2

√
2

3
(WΠ −WΣ)

√
2

3
(WΠ −WΣ) 1

3
(WΠ + 2WΣ)− a

 (41)

Similar results (with the exact same eigenvalues) are observed for Ω = −1/2.

In the radial approximation, the |3/2,±3/2〉 state does not couple at all with the

|1/2,±1/2〉 states. Coriolis coupling is responsible for coupling these two states,

which is neglected in this thesis. Therefore, the cross section may be calculated using

this 2x2 matrix.

In order to obtain a cross section for the 2P3/2 →2 P1/2 transition, it is necessary

to combine the cross sections in some manner. This depends upon the population

distribution among the hyperfine states. If the hyperfine distribution were confined

to the |3/2,±3/2〉 state and radial coupling were the only mechanism present, the

cross section would obviously be 0. On the other hand, if the hyperfine distribution

were confined to the |3/2, 1/2〉 state, the cross section for the transition would equal
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the cross section for the |3/2, 1/2〉 state to transition to either of the |3/2,±1/2〉

states. Thus, the question of finding the fine structure cross section depends upon the

population distribution among the hyperfine states, since the coupling mechanisms

between each hyperfine state (and therefore the cross sections for each hyperfine state)

differ.

In the general scenario, if the hyperfine population distribution is assumed to be

P (3/2,Ω), the following equation holds:

σ3/2→1/2(E) =

3/2∑
Ω=−3/2

P (3/2,Ω)[σ3/2,Ω→1/2,1/2(E) + σ3/2,Ω→1/2,−1/2(E)] (42)

In the radial coupling approximation, σ3/2,1/2→3/2,1/2 = σ3/2,−1/2→3/2,−1/2 and all

other cross sections are 0, since there are no coupling (off-diagonal) terms in the

potential. Therefore, assuming equal hyperfine splitting (P (3/2,Ω) = 1/4):

σ3/2→1/2(E) =
1

2
σ3/2,1/2→1/2,1/2(E) (43)

It is therefore sufficient in the radial coupling approximation to find σ3/2,1/2→1/2,1/2(E),

keeping in mind that the approximated cross section for the fine structure transition is

simply half of that value if the population is distributed equally among the hyperfine

states.

5.6.2 Cross Sections (Radial Coupling).

The hyperfine cross sections σ3/2,1/2→1/2,1/2(E) were calculated for Li + 4He, Li +

3He, Na + 4He, K + 4He, and 85Rb + Ar using the method outlined in the previous

section, except with the potential given by Equation (41).

The results for Li colliding with different isotopes of He are plotted in Figure 29.
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Figure 29. σ3/2,1/2→1/2,1/2 for Li + 4He and Li + 3He
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Figure 30. σ3/2,1/2→1/2,1/2 for Li + 4He, Na + 4He, and K + 4He

There is not a significant variation with increased mass, although the cross section

for Li + 4He is approximately 1.5% higher than the cross section for Li + 3He. The

potentials do not vary from one calculation to another. This suggests that cross

sections in the radial coupling approximation may be improved slightly by selecting

the heavier of two isotopes when a choice is available. Further investigation is required

to determine whether this result is specific to Li + He or whether this is a general

phenomenon.

Results for Li + 4He, Na + 4He, and K + 4He are plotted in Figure 30. In the radial

coupling approximation, there is no significant variance in the results, particularly for

Li + He and K + He.

The results for 85Rb + Ar are plotted in Figure 31. Here, the cross section is signif-

icantly lower than the cross sections calculated for other isotopes, by approximately

a factor of 10−5.
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Figure 31. σ3/2,1/2→1/2,1/2 for 85Rb + Ar

5.6.3 Comparison to Experimental Values.

There are some key differences between theoretical cross section calculations and

experimental measurement of cross sections. The cross sections calculated from ex-

periment would be the thermal average of the cross sections calculated in the previous

section, and therefore would not be expected to exhibit rapid oscillations. Further-

more, assuming the hyperfine population of the J = 3/2 level are all equally popu-

lated, the experimentally observed cross section is half the result calculated for the

hyperfine σ3/2,1/2→1/2,1/2 transition, as described in Equations (42) and (43).

It was difficult to obtain accurate experimental comparisons against values in

the literature for the cross sections for LiHe. One of the difficulties is that the fine

structure splitting of Li is so small, so it compounds the experimental difficulty of

such a determination. It is possible to get a reasonable estimate, though. In [9], the

cross section for the fine structure transition is listed as 37.3 × 10−16 cm2 (or 37.3
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Å2) at 556 K. Cross sections for the 2P3/2 → 2P1/2 collision with other noble gases

are given as falling in the range from 31.4 Å2 (LiNa) to 66.0 Å2 (LiXe) at this same

temperature.

When the results for Li + 4He in Figure 29 are convolved with a Boltzmann

distribution at 556 K and divided by 2 as per Equation (43), the result computed

is 31 × 10−16 cm2, which is somewhat lower than the experimental value of 37.3 ×

10−16 cm2, but relatively close. The results are expected to be somewhat low, since

derivative coupling and Coriolis coupling were completely ignored, though, so this is

not a problem.

For Na + He, the calculated results are again relatively close to experiment,

although slightly lower if the hyperfine distribution is assumed to be equal. Ex-

perimental cross sections are given at 385 K as 46.0 × 10−16 cm2, and at 300 K as

37.7 × 10−16 cm2 [16]. The results calculated in this thesis yield cross sections of

21.5 × 10−16 cm2 at 385 K and 21.4 × 10−16 cm2 at 400 K, respectively. Again, it is

observed that the cross sections are in the right ballpark, but are a bit low, since

derivative coupling and Coriolis coupling were both neglected.

Finally, experimental results for this collisional transition in Rb + Ar are difficult

to calculate precisely since the transitions are relatively small, but are around 1 ×

10−3×10−16 cm2 at 340-400 K, as summarized in [17]. This is again in the same order

of magnitude as the results from these calculations, although again these calculations

are observed to be somewhat less due to neglecting derivative and Coriolis coupling.

The calculation of time dependent results for Rb + Ar allow one to explore the

reasons why it couples so much worse than the Alkali + He results. The diabatic

potentials for Li + He are plotted in Figure 32, and the diabatic potentials for Rb +

Ar are plotted in Figure 33. There are two factors which jump out as explanations

of this result. First, the coupling (off diagonal) term in the potential is significantly
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Figure 32. Potentials for Li + He (diabatic representation).

Figure 33. Potentials for Rb + Ar (diabatic representation).
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lower in Rb + Ar, meaning the difference between WΠ and WΣ surfaces is less, and

therefore, according to Equation 41, the coupling is not as strong. Additionally, in

the diabatic representation of Rb + Ar, there is a well present on both the 2P3/2 and

2P1/2 states, which is not present when compared to the Li + He surfaces.

Figure 34. Real part of the phase of Rb + Ar scattering matrix for elastic scattering
and no Centrifugal potential.

To investigate the possible influence of the presence of the well, the phase of the

elastic S-matrix element for l = 0 (no Centrifugal potential term) is plotted in Figure

34. There appears to be some resonant structure associated with the wells which

may be further inhibiting the transition between the fine structure states; further

investigation is warranted.
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In summary, the results obtained compare favorably to experimental results. Al-

though two forms of coupling were neglected, the results were all within the proper

order of magnitude, and were found to be close to experimental values. The results

were also shown to exhibit proper behavior when extending to Rb + Ar, where the

cross section is significantly lower. By examining the potentials and the time depen-

dent behavior, it is possible to explain the low results for the Rb + Ar cross sections.

Future work would include Coriolis and derivative coupling terms to more fully model

the coupling between all states for Alkali + Noble Gas interactions, providing a more

complete picture of the hyperfine state transitions.

5.7 Error Sources

There are four possible sources of error in these calculated cross sections, with the

hypothesized most significant source of error listed first and the hypothesized least

significant source of error listed last:

• The inputted adiabatic potentials

• The cutoff of the effective potential, particularly for larger Centrifugal potentials

(larger l, and therefore higher energy)

• Numeric error arising from ensuring |1 − Sel(k)|2 ≥ 0, as discussed in Chapter

IV

• Error in the discretization process

In particular, the results for Li + He were calculated using much higher quality

potentials than the results for the other Alkali + Noble Gas combinations explored.

Since equally spaced points in k-space were used, higher energies contain fewer

points, so the lack of significant shape in the high-energy regions may be due to
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the smaller sampling in the high-energy region. This may be resolved by either

using more data points or obtaining the Fourier transform of the correlation function

(already obtained) at more energy values and using the analytic expression for a

Gaussian for the Møller states. However, the rapid oscillations in the cross section

calculations would be averaged out when convolving with a Boltzmann distribution,

so the sampling error is relatively small.
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VI. Conclusion

Code was written to calculate the absorption cross sections as a function of en-

ergy for two coupled one dimensional, spherically symmetric potentials. The Split

Operator Method[4] was used to propagate the an initial Møller state, assumed to be

a Gaussian in the asymptotic limit, through a potential. The correlation between the

wave packet and Møller final state, which was also assumed to be a Gaussian when

placed in the asymptotic limit, was calculated at each time step. Using the method of

Tannor and Weeks[18], the correlation function was used to obtain scattering matrix

elements. From scattering matrix elements for several different effective potential

values and using the Method of Partial Waves[7], the absorption cross section is cal-

culated. A method to estimate the algorithmic error was also developed.

6.1 General Method

The procedure developed to calculate absorption cross sections using the method

of Tannor and Weeks[18] was developed. Through judicious choice of parameters, it

was possible to obtain cross sections for several different energies. The procedure may

be summed up as follows:

• Determine the energies to obtain scattering cross sections over

• Determine the k-values corresponding with those energies for the reduced mass

of the system

• Position a Gaussian wave packet spanning those k-values in the asymptotic limit

and propagate using the method in Chapter II for l = 0 to lmax

• Calculate the S-matrix elements for elastic and inelastic scattering
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• By summing the magnitude of the S-matrix elements for elastic and inelastic

scattering, determine the numerically stable region

• Calculate the absorption cross section using Equation (30)

The code for propagation and scattering was verified against several test cases to

confirm correct behavior, as detailed in Chapter IV.

6.2 Results

It was determined that in order to use Gaussian Møller states, it was necessary to

either position the initial wave packet very far away from the potential, or to truncate

the effective potential beyond a certain point. For LiHe, since the computational time

required to propagate for several different effective potentials would be prohibitive in

the time available, the effective potential was truncated beyond 490 Bohr. This

introduced some error which could be eliminated by either starting the packet farther

out or by propagating the wave packet under the effective potential for each value of

l from 0 to lmax.

Two different methods of coupling were examined. Under the first method, cou-

pling was estimated from the spin-orbit split coupling. These results were analyzed

for the high-quality Li + He surfaces, and produced results in the right ballpark,

but the results were not extremely satisfying and could not be extended to other

Alkali + Noble Gas potentials easily, since the spin-orbit split potentials for other

combinations were not readily available.

Using a method discussed by Millard Alexander[2], it was possible to obtain a

more satisfying diabatic potential representation from the WΠ and WΣ surfaces. This

method enabled examination of Li + 4He, Li + 3He, Na + 4He, K + 4He, and

85Rb + Ar, assuming only radial coupling. The results in each case were slightly
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below experimental results since derivative coupling and Coriolis coupling were both

neglected. However, in each case, the cross section was close to experimental results.

Furthermore, the substantial difference between Li + He and Rb + Ar was noticed,

and some explanations from the dynamical propagation of the potentials were noted.

6.3 Future Work

There are several directions for future work stemming from thesis could go, but

they can be boiled down to one of four main areas. First, there is a need to use

the technique applied in this thesis, using different atomic systems with different

potentials and compared to experimental data. The primary difficulty is obtaining

reliable potentials for these systems.

Radial coupling was assumed to be the only coupling mechanism. One area of

future work would be to relax this constraint and introduce Coriolis and/or derivative

coupling terms. This should yield cross sections which are closer to the experimentally

accepted values.

Another thrust of work stemming from this thesis would be development of a

library of Møller initial and final states which are propagated out to infinity under

the asymptotic Hamiltonian, then in to a reasonable point (perhaps 100 Bohr) under

a Hamiltonian with the potential entirely due to the effective potential, for several

different values of l. At a range of 100 Bohr, most atomic and molecular potentials

have reached their asymptotic limits, but for large values of l necessary for the cross

section calculations, the effective potential is still significant. Therefore, such a li-

brary would provide a better starting wave packet for future scattering calculations

to be performed, independent of the atomic system, and reduce computational time

required for one scattering calculation significantly – perhaps by as much as a factor

of 2 or more. The savings in time is because by starting closer in space, the calcula-
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tion does not have to extend as far in time. The results would also be more accurate,

since a truncation of the effective potential would no longer be required. This would

yield more accurate results than a truncation technique.

Finally, there are several inefficiencies in the code as presently written. The focus

was on readable, working code and not on speed. It is possible that somewhat better

performance could be obtained by cleaning up many of these inefficiencies. Although

the performance would remain the same overall order of magnitude and is primarily

limited by the FFT time, it is expected that a performance benefit of perhaps as much

as a factor of 1.5 to 2 could be obtained by rewriting the code in a highly optimized

manner. Some parameters are calculated that are not required for the scattering

calculation and could be removed from optimized code. More details are provided in

Appendix B.
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Appendix A. Sample Input Data Files

There are three separate data files used to control the propagation, scattering,

and cross section calculations. The files required are a Gaussian Wave Packet file

(generally ending in .gauss), a Hamiltonian file (generally ending in .ham), and a

Propagation file (generally ending in .prop). Each of these files, along with all possible

options that are allowed, are discussed below.

In all data files, comments begin with the ! character, and blank lines are allowed.

No spaces are allowed between the text label and the equal sign. All numeric inputs

must be in atomic units.

1.1 Gaussian File

The Gaussian file is the simplest of all of the data files, and contains 4 required

parameters. A sample Gaussian file is listed below:

! Position Gaussian Wave Packet on the left of the x grid

x0=40

! Spread in x-space. Note that dk0 = 1/(2*dx0)

dx0=0.8

! Moving to the left

k0=-4.2

! Reduced Mass of LiHe, in atomic units

mass=4677.23

The parameters are fairly self-explanatory, specifying a position, momentum,

mass, and spread of the initial Gaussian wave packet. These parameters are used

with Equation (17) to specify the initial wave packet. When performing a propaga-

tion with a Møller final state, the spread and mass are also used for the Møller final

state automatically. The Gaussian file is required by the Propagator file.
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1.2 Hamiltonian File

The Hamiltonian file contains an option for specifying whether or not to turn on

the kinetic energy, as well as several options for the potential energy of either one or

two state systems, and the interaction potential between these systems. Absorbing

boundary conditions are also specified in the Hamiltonian file, as they are imple-

mented as an imaginary modification to the diagonal elements of the potential. A

sample Hamiltonian file is listed below:

! Hamiltonian data

! kinetic=none turns off the kinetic energy, for testing purposes only.

! kinetic=standard is implied if there is no kinetic= line in the file.

kinetic=standard

! Number of potentials

! If this parameter is not specified, then it is assumed there is only

! one potential.

num_potentials=2

! Set up first potential

! curr_potential tells the program which potential the data applies to

curr_potential=1

! potential= specifies the potential types.

! A full list of potential types is discussed later in this section.

! Here, a linear interpolation between data points is specified, with

! points found in the referenced file.

potential=interpolate

potential_filename=LiHe_dia_p32_full_17.dat

! Set up second potential

curr_potential=2

potential=interpolate

potential_filename=LiHe_dia_p12_full_17.dat

! Set up interaction potential between potential #1 and potential #2

! The parameters for a coupling potential are identical to parameters

! for an absorbing potential.

coupling=interpolate
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coupling_filename=LiHe_dia_V12_full_17.dat

! Set up absorbing boundary conditions (optionally)

! boundary= sets the absorbing boundary condition type (currently,

! only gaussian or none is supported)

! If boundary=none or no specification is present, absorbing boundary

! conditions are disabled

boundary=gaussian

! It is possible to specify a large absorbing boundary conditions with

! magnitude greater than 1, although it is not usually necessary.

boundary_magnitude=1

! dx0 specifies the width of the Gaussian absorbing boundary condition.

boundary_dx0=10

Several different potentials are supported in addition to the linear interpolation.

Any of these potentials can be used with either potential= or coupling=. Examples

of each potential are given below. It is also possible to specify potential=none

(or coupling=none) for no potential. When using two potentials, all potentials are

specified in the diabatic representation.

The Hamiltonian file is required by the Propagator file.

1.2.1 Simple Harmonic Oscillator.

An example of a Simple Harmonic Oscillator potential specification is as follows:

potential=sho

potential_x0=0

potential_mass=0.5

potential_omega=1

These variables specify a potential of the form V̂ = 1
2
mω2(x−x0)2. All parameters

are required.
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1.2.2 Square Well.

A square well potential may be specified, with different heights below, at, and

above the well. The following code specifies a square potential:

! Potential energy

potential=square_well

! Start of the square well

potential_xmin=10

! End of the square well

potential_xmax=20

! The potential value inside the well

potential_height=-0.166

! With x < potential_xmin, the potential value

potential_lower=0

! With x > potential_xmax, the potential value

potential_upper=0

This sample sets a square well with a depth of 0.166 au inside the well, and

no potential outside the well. All parameters are required to specify a square well

potential.

1.2.3 Interpolation.

This performs a linear interpolation between each point in the data file specified.

The parameters are as indicated in the first example in this section. There are two

requirements for this data file:

• The data must contain two columns. The first column is the x (or r) value.

The second column is the potential energy, in atomic units.

• The data must be sorted from least to greatest in the first column.

For x less than the first entry in the file, linear extrapolation is used, with the

slope from the first entry used to extrapolate. For x greater than the last entry in
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the file, linear extrapolation is used, with the assumption of no slope. (For spherical

potentials, the potential should level off at some value.)

1.2.4 Morse and Lennard-Jones 6-12.

Morse and Lennard-Jones potentials were originally planned to be implemented,

but were not implemented due to the difficulty in fitting the input potentials to a

Morse or Lennard-Jones potential while maintaining accurate behavior. Therefore,

use of the Morse or Lennard-Jones potentials have not been fully tested. It is recom-

mended that the Linear Interpolation is used instead of the Morse or Lennard-Jones

potentials, as it will allow a more arbitrary potential form.

1.3 Propagation File

The Propagator file combines the initial Gaussian wave packet, under some Hamil-

tonian, and discretized under further parameters as specified within the propagation

file. An example of a Propagation file is as follows:

! Path from Propagator file to initial wave packet

gaussian=../LiHe_left.gauss

! Path from Propagator file to Hamiltonian file

hamiltonian=../LiHe_2p.ham

! Moller parameters are not required. If not specified, there

! is no Moller calculation, just a propagation.

! It is assumed the spread (dx0) and mass are the same. The

! Moller final state is assumed to be a Gaussian. The Moller

! initial state is assumed to be the initial wave packet.

moller_final_x0=50

moller_final_k0=4.2

! Set the packet and Moller final states, using potential numbers

! as in the Hamiltonian

! This is the elastic scattering case, so they are the same

! These parameters are not required, and default to 1 if not specified.

! Wave packet on the first potential
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packet_potential=1

! Moller final state on the first potential

moller_potential=1

! Set l-value for effective potential modifications.

! If this parameter is not specified, the default is 0.

l_value=0

! Set cutoff position above which the effective potential is not applied.

! If this parameter is not specified, the default is 0

! (which means no cutoff).

l_max=490

! Directory to output resulting calculations to.

! This directory does *not* have to exist prior to execution

! WARNING: all data in this directory will be erased when the program

! is executed with this parameter file as input.

output_directory=out

! Other parameters for propagation:

! Number of data points to discretize the data set into

num_points=32768

! Minimum and maximum x-values

! NOTE: k-value data is only accurate when x_min=0. This is not a concern

! since the actual propagations are spherical potentials, where

! x_min=0 obviously.

x_min=0

x_max=320

! t_min=0 is assumed. That parameter may not be changed.

! Set the maximum time to propagate to

t_max=200000

! Set the step size in time

dt=1
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Appendix B. Code Comments

2.1 Acknowledgements

The author is grateful to the developers of the Fastest Fourier Transform in the

West library [12]. Additionally, the author is grateful to the developers of SCons

version 1.2.0 [13], which was used to automate the program build process, and GCC

4.3 [1] (gfortran in particular), which was used to compile the program.

2.2 Code Availability

The code is available upon request from the author, who may be reached by e-mail

at samuel.butler@us.af.mil, or from the author’s thesis advisor, Dr. David Weeks.

The procedure in Chapter IV translates into the following for the user of the

available code:

• Determine manually the required energies, Hamiltonian, wave packet, and base

propagation parameters

• Create a .gauss, .ham, and .prop file based on this information (see Appendix

A).

• Determine the tolerable lower bound on the error

• Run the following code to determine lmax and generate specific propagator files:

$ prop_copy myfile.prop -n=1e-5

(Alternatively, use -M=lmax to specify a user-defined maximum l-value.) Several

different propagator files will be generated ending with .0 to .lmax.

• Propagate each file (except the original master file) and calculate S-matrix ele-
ments:
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$ scattering myfile.prop.0 -n=1e-5

$ scattering myfile.prop.1 -n=1e-5

...

$ scattering myfile.prop.<l_max> -n=1e-5

(NOTE: By default, any propagation results in an outputted file each iteration.

This may result in very large space requirements on your hard drive, and may

result in substantially increased runtime. You may use -x=# or -k=# to control

this output. If -x=0 or -k=0 is specified, only the initial and final packets are

outputted. Using -x=1000 and -k=1000, for example, will output x and k only

every 1000 iterations instead of the default of every iteration.)

• Run the following program to determine the cross sections:

$ xsection myfile.prop -n=1e-5

• Finally, use the cross-section data to calculate the collisional transfer rate man-

ually by convolution of the absorption cross section with the Boltzmann distri-

bution.

Additionally, a program named propagator is available. This program only per-

forms the wave packet propagation, without calculating S-matrix elements.

2.3 Known Issues

On some platforms, it was noted that the scattering and xsection programs would

result in a segmentation fault when outputting certain parameters to the screen. If

a problem is encountered, do not run the affected program with the -s command-line

option. The result of the program without using -s will appear silent, although the

program will run as expected and will output results in the directory specified in the

.prop file.
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In the code used for the propagation, it is assumed that the initial wave packet is

in the asymptotic Hamiltonian, outside of influence of the potential. Therefore, the

Møller initial state is assumed to be the initial wave packet. Furthermore, this initial

wave packet is assumed to be a Gaussian. The Møller final state is also assumed to

be in the asymptotic Hamiltonian region, outside the influence of the potential, and

therefore is also a Gaussian.

Command line options are consistent from one program to another, although not

all programs will use all of the command-line options. This allows a user to specify

one set of command-line options and simply pass those same options to each program

being called.

This is the author’s first major project in FORTRAN, and as such, there may

be some hidden bugs or other issues that I am unaware of. It is known that the

code is relatively inefficient. Some of the inefficiencies are due to calculations that

are nice to have, but not essential, in calculating the cross sections. For example,

the code verifies the wave packet has a projection of close to 1 at all iterations in

time, if absorbing boundary conditions are not used. This redundancy is a good

check to perform to identify numeric error, but is not fundamental to the calculation.

As another example, the code calculates the expectation value in x and outputs this

value to a file at all time steps. This information is also generally not needed, but

enables some checks to ensure functioning code in certain situations. However, these

calculations do not affect the order of magnitude of the runtime substantially.

If performance is especially sluggish, one of two major factors are likely to blame.

If the number of data points in the discretization is specified in the parameter file as

N , then for small N , the runtime will be limited by the I/O of data files to the hard

drive for ψ and ξ at each point in time. To reduce this strain (and/or the amount

of disk space consumed), use the -k=# and -x=# command line options to specify
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outputs only every # iterations instead of the default of every iteration. If -k=0 or

-x=0 is specified, only the initial and final wave packets are outputted. (The default

is -k=0 and -x=0.)

At some point, a majority of the computational burden per iteration will shift to

calculation of the FFT at each time step. To speed up an FFT-limited routine, use a

smaller value of N . If this is not acceptable, then either increasing the time step or

decreasing the maximum time will also enhance run time.

2.4 Disclaimer

The code from the author is provided as-is, with no guarantee, implied or stated,

of working correctly. Although the author has much experience in programming in C

and C++, this is the author’s first major project in FORTRAN, and thus it is quite

likely that there are amateur coding mistakes that may cause problems when porting

the code to different platforms. The target operating system for this code is Linux;

some changes are necessary in order to run the code on another operating system.

The code was mostly written comply with the FORTRAN 95 standard, although

some GCC extensions and FORTRAN 2003 features may have also been used.

The use of the code, in whole or in part, in the development of commercial soft-

ware is strictly prohibited. It is provided strictly for free personal, academic, and

government use only.
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